The gut transcriptome of a gall midge, Mayetiola destructor.

نویسندگان

  • Shize Zhang
  • Richard Shukle
  • Omprakash Mittapalli
  • Yu Cheng Zhu
  • John C Reese
  • Haiyan Wang
  • Bao-Zhen Hua
  • Ming-Shun Chen
چکیده

The Hessian fly, Mayetiola destructor, is a serious pest of wheat and an experimental organism for the study of gall midge-plant interactions. In addition to food digestion and detoxification, the gut of Hessian fly larvae is also an important interface for insect-host interactions. Analysis of the genes expressed in the Hessian fly larval gut will enhance our understanding of the overall gut physiology and may also lead to the identification of critical molecules for Hessian fly-host plant interactions. Over 10,000 Expressed Sequence Tags (ESTs) were generated and assembled into 2007 clusters. The most striking feature of the Hessian fly larval transcriptome is the existence of a large number of transcripts coding for so-called small secretory proteins (SSP) with amino acids less than 250. Eleven of the 30 largest clusters were SSP transcripts with the largest cluster containing 11.3% of total ESTs. Transcripts coding for diverse digestive enzymes and detoxification proteins were also identified. Putative digestive enzymes included trypsins, chymotrypsins, cysteine proteases, aspartic protease, endo-oligopeptidase, aminopeptidases, carboxypeptidases, and alpha-amylases. Putative detoxification proteins included cytochrome P450s, glutathione S-transferases, peroxidases, ferritins, a catalase, peroxiredoxins, and others. This study represents the first global analysis of gut transcripts from a gall midge. The identification of a large number of transcripts coding for SSPs, digestive enzymes, detoxification proteins in the Hessian fly larval gut provides a foundation for future studies on the functions of these genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wheat Mds-1 encodes a heat-shock protein and governs susceptibility towards the Hessian fly gall midge.

Gall midges induce formation of host nutritive cells and alter plant metabolism to utilize host resources. Here we show that the gene Mayetiola destructor susceptibility-1 on wheat chromosome 3AS encodes a small heat-shock protein and is a major susceptibility gene for infestation of wheat by the gall midge M. destructor, commonly known as the Hessian fly. Transcription of Mayetiola destructor ...

متن کامل

Massive Shift in Gene Expression during Transitions between Developmental Stages of the Gall Midge, Mayetiola Destructor

Mayetiola destructor is a destructive pest of wheat and has six developmental stages. Molecular mechanisms controlling the transition between developmental stages remain unknown. Here we analyzed genes that were expressed differentially between two successive developmental stages, including larvae at 1, 3, 5, and 7 days, pupae, and adults. A total of 17,344 genes were expressed during one or mo...

متن کامل

Gall Midge Olfaction and its Role in Speciation

With the swede midge (Contarinia nasturtii) as our main model species, we study two types of olfactory cues that are of importance for gall midges: 1) the pheromones emitted by the female to attract the male; 2) and the host plant volatiles that the females use when finding a host for oviposition. We found that both the blend of compounds and the enantioisomeric form are important for male attr...

متن کامل

Unbalanced Activation of Glutathione Metabolic Pathways Suggests Potential Involvement in Plant Defense against the Gall Midge Mayetiola destructor in Wheat

Glutathione, γ-glutamylcysteinylglycine, exists abundantly in nearly all organisms. Glutathione participates in various physiological processes involved in redox reactions by serving as an electron donor/acceptor. We found that the abundance of total glutathione increased up to 60% in resistant wheat plants within 72 hours following attack by the gall midge Mayetiola destructor, the Hessian fly...

متن کامل

Development of New Polymorphic Microsatellite Loci for the Barley Stem Gall Midge, Mayetiola hordei (Diptera: Cecidomyiidae) from an Enriched Library

Using an enriched library method, seven polymorphic microsatellite loci were isolated from the barley stem gall midge, Mayetiola hordei. Polymorphism at loci was surveyed on 57 individual midges collected on barley in Tunisia. Across loci, polymorphism ranged from two to six alleles per locus. The observed heterozygosity varied between 0.070 and 0.877. Based on the number of alleles detected an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of insect physiology

دوره 56 9  شماره 

صفحات  -

تاریخ انتشار 2010